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- In 1983 HSS Inc completed the development of a Laboratory Model Present
. Weather Observing System (APWOS) under contract to the Air Force Geophysics
% Laboratory (AFGL). Preliminary evaluation of the APWOS was conducted at the
;.j HSS Inc facility during the time period October 1983 to January 1984. In February
’ 1984 the sensor was moved to the AFGL Weather Test Facility (WTF) at Otis
/ ‘,\ ANBG on Cape Cod, Mass. where a full complement of meteorological sensors
')'-‘;f and a professional weather observer were on hand to provide comparison information.
S In 1984 AFGL exercised an option clause in their contract under which HSS Inc

proceeded to fabricate a field model! APWOS which was completed in January
N 1985, and also continued the evaluation of the HSS Inc APWOS technique. A field
) model APWOS was also fabricated for the Atmospheric Sciences Laboratory (ASL)
; of the White Sands Missile Range (WSMR) and installed at the AFGL Weather
; Test Facility in November 1984. The evaluation of the HSS Inc APWOS technique
!

> Z"_: was then expanded to include the WSMR sensor. We wish to express our appreciation

:I to the members of the ASL whose cooperation made possible the installation,

5-5_ operation and evaluation of their sensor at the Otis WTF: Mr. Gary Clayton, Mr.
h Robert Dickenshied, Mr. Marvin Duggan and the WSMR project technical monitor
. J_’ Mr. Fidel Tibuni.

J Mr. Frederick Brousaides was the project technical monitor of the AFGL
3’ program under which the development and evaluation of the Automated Present
Weather Sensor was performed. We express our deep appreciation to him for

* his unfailing support through the contract period. AFGL personnel stationed at
;:', the Otis WTF: Mr. Leo Jacobs, Mr. Ralph Hoar and Mr. Clyde Lawrence, extended
the fullest possible cooperation and interest during the test and evaluation period

for which we thank them.

:, Further, we extend our thanks to members of the HSS Inc technical staff
';:- who made invaluable contributions during the development and evaluation of the
f-: . APWOS sensors: Mr. Marion Shuler, Mr. Vincent Logiudice, Mr. Albert Tuttle

’_ and Mr. Edward Goldman. To Janice Young and Patricia Henckler, our editor

. ‘ and typist, we give our grateful acknowlegement {or their dedication and perserver-
~.§ ance in the preparation of this document.
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. 1.0 INTRODUCTION
358
;s -\-
uY 1.1 Present Weather Definition

l/ ‘h\'

2

The term "Present Weather" as employed in the Federal Meteorological Handbook

m.j (Reference 1) includes a large class of atmospheric phenomena (e.g., tornadic activity,
4 '_j thunderstorm activity, precipitation, obstructions to vision, and "other" atmospheric

)

phenomena such as aurora). For purposes of this program the term present weather

:';

refers to those atmospheric phenomena which are local to an Automated Present

\:' Weather Observing System (APWOS). These phenomena include: (1) all forms of
‘{;;. liquid and frozen precipitation, e.g., rain, drizzle, snow, snow pellets, snow grains,
- ice pellets (formerly sleet) and hail, and (2) those suspended particles which are classed
‘ as obstructions to vision; namely, mist, fog, haze, dust and smoke.
".;52
.
s 1.2 Historical
o
h As a result of an unsolicited proposal to the Air Force (AFGL) by HSS Inc in
j:f.; 1983 AFGL supported the development of an Automated Present Weather Observ-
} ing System (APWOS) based on an HSS Inc invention for which patent rights are pending.
- The development of the first instrument was begun in July 1983 and completed in
_-_, October 1983. This first APWOS was termed a Laboratory Model Instrument (as opposed
. “ to a Field Model) because it did not have an on-board microprocessor; rather it used
':b a remotely located IBM personal computer (PC) to perform the data collection, analysis,
real-time reporting functions and storage of data.
" The Laboratory Model APWOS development program concluded in April 1984,
; :-'_{ but the contract had an option clause for continuing the development of the APWOS
_'.:‘_ and for the conversion of an AFGL-owned VR-301 Visibility Meter into a Field Model
'-::‘_ Automated Present Weattier Sy<tem (i.e.. u sensor system with an on-board microprocessor
= which analyzes the precipitation cata at the end of each sample time period, sends
,_ its report to a user terminul. .umps the data and begins the process all over again).
: $ Both the Laboratory Mode! APWOS and the field model APWOS were tested
Mt extensively at the AFGL Weather Test Facility (WTF) located at Otis ANGB, Ma.

where they continue to operate.
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A full field model APWOS, i.e., not a converted VR-301, was fabricated under
separate contract to the Atmospheric Sciences Laboratory (ASL) of White Sands Missile
Range (WSMR). The WSMR APWOS is capable of operating from either AC line power
or from 24 VDC batteries. That instrument also underwent extensive testing at the
AFGL WTF from November 1984 until December 1985. Data taken by the WSMR
instrument are also included in this report.

The Air Force Geophysics Laboratory has a long-standing interest in the develop-
ment of an automated present weather observing sensor to fulfill an Air Force require-
ment for such a sensor (or system). The reader is referred to the AFGL reports by
H. Albert Brown (References 2 and 3) for an historical account of the AFGL efforts
to develop a present weather observing system based on the use of an automated
array of standard weather sensors coupled with a decision free computer program.
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2.0 AUTOMATED PRESENT WEATHER
2.1 Description

The unique capabilities of the HSS Inc type of automated present weather
system derives from its ability to measure the size and velocity of each precipita- ‘
tion particle that passes through the sample volume of the instrument. After the |
passage of a precipitation particle through the sample volume the size and velocity
information is stored in a data matrix by the data processing system. The particle
size/velocity data is collected and stored for a time interval (the sample time period)
adequate to provide a statistically significant and representative sample of particle
sizes and velocities.
The size/velocity measurement capability was achieved by adding a micro-
computer to an HSS Inc Model VR-301 forward scatter visibility meter. The compu-
ter processes the AC waveform related to the passage of & particle through the sample
volume as well as the quasi-DC information in the output signal due to the time-inte-
grated scattering effects of all particles, both suspended and precipitating. Because
- the VR-301 is a visibility meter, the HSS Inc present weather system is capable of
measuring the atmospheric extinction coefficient as well as the size and velocity
of precipitation particles. As a result, the instrument has three unique capabilities:
(1) the detection, identification and quantification of the various forms of precipitation,
(2) the ability to discern whether an obstruction to vision is caused by precipitating

particles or suspended particles and (3) the ability to separate the fraction of the
total atmospheric extinction coefficient due to suspended particles from that due
to precipitation particles. The latter two functional capabilities follow from the i
first; i.e., the sensor can only perform these two functions because it is fundamentally
a visibility meter with the added capability of performing the precipitation measure-
ment functions.
A size/velocity matrix is a very convenient, although not essential, presenta-
tion for identifying various forms of precipitation. For this reason we have termed
such a matrix the "Precipitation Recognition Matrix". Types of precipitation are
identified from their "Signature" in the Precipitation Recognition Matrix. The "Sign-
ature" is the particle size/velocity distribution that is characteristic of each type
of precipitation phenomena.
An example of a precipitation recognition matrix is shown in Figure 2.1. This
figure portrays a 16 x 16 matrix array of particle sizes and velocities. Sizes are arranged

in columns and velocities in rows. It is further convenient, but not essential, to establish
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the incremental values of each column and row in the size and velocity scales from

N

’ the known characteristics of rainfall because rain is the most common form of precipi-

»

’ tation in the geographic areas where automated present weather systems are likely

‘

to be employed. The choice of particle size increments for the columns is further
constrained by the requirement to provide accurate measurements of rainrate and

s

rainfall. The choice of velocity size increments for rows is constrained by the need

. o

‘o to discriminate the velocities of liquid particles of precipitation from those of the
various forms of frozen precipitation.

The upper and lower limits to the size and velocity scales of the matrix must
encompass the full range of sizes and velocities of all forms of liquid and frozen
precipitation —- from the smallest particles (drizzle) to the largest (hail). Figure
o 2.1 presents examples of size and velocity scales based on these considerations.

. Marshall-Palmer models of raindrop size distributions (Reference 4) were a
\ convenient means for a first attempt at establishing the optimum incremental dimen-

- o o

sions of the column size scales. Marshall-Palmer models provide the size distribution
y of raindrops as a function of rainrate. Rainrates from 0.25 mm/hr to 100 mm/hr

5 were used in the determination of the incremental size groups shown in Figure 2.1
for particle sizes with radii of up to 3 millimeters. (Nature places a physical limit

to the diameter of raindrops of from 5 to 6 millimeters). Rainrate measurement
accuracies of one percent were set as a goal during the process of selecting the drop

size increments.
The framework for the initial velocity scale was established using the Gunn-

' Kinzer measured velocities for raindrops in stagnant air (Reference 5). That is, the
L Gunn-Kinzer velocities for Row 1 were assigned to the drop sizes in Column 1; the
velocities for Row 2 correspond to drop sizes in Column 2, and so on up to drop radii
K of 3 millimeters. The remainders of the velocity scale and size scale were chosen
2 to encompass the more common forms of hail. Snow velocities are known to be low
; (of the order of 0.5 to 3 meters/sec). Thus, they overlap the velocities of very small
P raindrops.
' If rainfall behaved in the exact manner of the Marshall-Palmer and Gunn-Kinzer
.' models all raindrop measurements would fall in the data bins along the diagonal of
k. the Precipitation Recognition Matrix. In practice, several factors tend to disperse
K the size/velocity relationship from the idealized characterizations: (1) the Marshall-/
S Palmer size distribution for raindrops is only a best-fit approximation, (2) winds
! and wind gusts can perturb the velocity/size relationship, (3) the shape of the sample
:. volume can significantly influence the velocity/size characteristics of particles (i.e.,

...... .
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o
) particles falling through a portion of the sample volume other than the center, or
’,:'.‘ . falling in other than a vertical direction because of wind, will exhibit slightly different
‘:?,_, velocity/size characteristics depending upon the shape of the sample volume and
' the direction of the wind).
:E:‘c:? For the foregoing reasons one expects raindrop counts to show up in some
& 2 off-diagonal bins of the Precipitation Recognition Matrix as shown in the schematic |
3},}3 illustration given in Figure 2.1. Indeed this conjecture is substantiated in practice. ?
o Figure 2.1 is, however, a realistic portrayal of the use of the Precipitation Matrix 1‘
;;:: ? to identify different kinds of precipitation. The locations of various forms of precipi- ’
?:3’ tation which are schematically illustrated in the matrix are also borne out in practice.
ety Size and velocity scales shown in Figure 2.1 were considered as preliminary
. at the outset of the development program and subject to change if changes could
éa. be identified which would improve the identification of the various types of precipi-
;::% tation. Later, several changes were made in the low and high ends of both scales.
:::E Also, a dual-value matrix scheme evolved which proved to be useful: the size scale
A : of the first matrix covered the size range up to 1.5 millimeters and thus gave better
-,'. l size resolution for light and medium forms of precipitation. The second matrix handled
*?; the overflow into the domain of large particles when heavy precipitation occurred.
S. At the conclusion of the program experiments were being conducted with a single
:;a;u matrix which had 16 velocity increments and 23 size increments.
R 2
5; 2.2 The Laboratory Model APWOS
Ko
qns The basic sensor for both versions of the APWOS is a VR-301 Visibility Meter
:::5.:; with slightly modified electronic circuits. Details of the VR-301 Visibility Meter
§hx§? may be found in Appendix A. A functional electronic block diagram of the sensor
".t‘:‘. head of the VR-301 is provided in Figure 2.2. The source of light is a light emitting
\ diode (LED) that is electronically modulated at a frequency of 2 KHz. When fog
i:?:.. or haze, without precipitation, is present in the sample volume a quasi-steady scattered
’:}‘ light signal is generated as shown in the figure. At the output of the detector both

AC and DC signals are present; the AC signal is due to the modulated source radiation
scattered by the suspended particles, the DC signal is due to any ambient light which J
reaches the detector.
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The output signals from the silicon photovoltaic detector are AC-coupled to
"-.,_ a bandpass filter/amplifier. The DC signal level is removed in the process leaving
RPN only the AC signal due to the suspended particles. The AC signal is synchronously
rectified and passed through a lowpass filter/amplifier which provides a DC analog
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Figure 2.2. Block Diagram of the standard VR-301 Visibility Meter
Signal Processing.
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voltage that is proportional to the number of suspended particles in the sample volume.
When properly calibrated the signal output is converted into a measurement of visual
range via the atmospheric extinction coefficient.

The HSS Inc automated present weather system makes use of the AC signal
which remains after the DC ambient light signal is removed; i.e., after the bandpass
filter/amplifier and before synchronous rectification. Any AC signal present at this
point is due to suspended particles or precipitation particles. In the case of suspended
particles the AC signal has a constant peak value as illustrated in Figure 2.2. If the
signal is due to particles of precipitation passing through the sample volume the signal
will appear to be like those illustrated in the upper half of Figure 2.0. If fog or haze
is present during precipitation the AC signals will appear as shown in the representation
given in the lower half of Figure 2.3.

The VR-301 has a power/control unit through which all signals are passed on
their way to the data recording/processing system. In the case of the Laboratory
Model present weather system, the data processing system is comprised of an electronic
interface unit fabricated by HSS Inc and an IBM PC computer as shown in Figure
2.4. The IBM-PC has since been replaced by a faster ATT Model 6300 PC because
the IBM-PC could not handle the large drop rates of heavy rains whereas the ATT-

PC has no problem.

From Figure 2.4 it may be seen that both the AC signal and DC signal are
sent to the microcomputer via an analog multiplexer and A/D converter. Signals
from a tipping bucket rain gauge and a MAWS temperature sensor are also sent to
the computer via the same route. (NOTE: MAWS is an acronym for the AFGL Modular
Automated Weather System).

A 12-bit A/D converter is used to digitize the analog signal from the VR-301
sensor and signals from other meteorological sensors. The multiplexer is directed
by the microprocessor to continuously monitor the present weather AC signal except
for a periodic momentary (once a minute or once every half minute, for example)
when the atmospheric extinction coefficient signal and other meteorological sensor
signals are to be sampled.

As indicated in Figure 2.4 all signals generated by the detector are processed
by hardware up to and including the digitization of the DC and AC signals by the
A/D converter.
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Figure 2.3. Representative signals produced by raindrops passing through
the sample volume of the VR-301.
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Pigure 2.4. Block diagram of the Laboratory Model

Automated Present Weather Observing System.
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Digitization of the AC signal occurs at twice the modulation rate of the LED

j source. The time of digitization is governed by a sync-signal derived from the source
- modulator. The AC signal is digitally sampled only at the time of peak positive and
:‘ negative values of the signal. After digitization all analog signals and the AC-Signal
' are processed by the microcomputer using software programs which are outlined

¢ in a later section of this report.

A typical automated present weather report generated by the Laboratory Model
, instrument is shown in Figure 2.5. In this instance, the report was produced every
D six minutes and consisted of the following data items:
Column 1 Date
Column 2 End Time of Sample Period
Column 3 Daytime Visual Range
Column 4 Precipitation Type and Intensity and/or Obstruction to Vision
(Note: The International Visibility Code is used in classify~-

a3
XL,

ing the obstruction to Vision; The Federal Meteorological

¥, Handbook Definitions are used to classify precipitation
.} intensity)
E Column 5 Number of Particles passing through the sample volume
’ during the sample time period
Column 6 Number of tips of the tipping bucket rain gauge which occurred
'j’ during the sample time period
j Column 7 Temperature, Degrees F
Column 8 Total Atmospheric Extinction Coefficient derived from
. the DC analog signal of the VR-301 sensor
) Column 9 The Atmospheric Extinction Coefficient due to Suspended
- Particles (The contribution to the total extinction
coefficient by precipitation has been subtracted)
2.3 The Field Model APWOS
: 2.3.1 General
o | A functional block diagram of a Field Model Present Weather System is shown
: in Figure 2.6. As with the Laboratory Model instrument the AC and DC signals from
; the VR-301 sensor are sent to the microprocessor via an analog multiplexer and an
) 11
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TIME  DAYTIME

RAIN

TEMF

DATE FRESENT EVENT TOTAL EXCG EXCO-EVENTS DISt
VIS RNG WEATHER COUNT TIPS DEG F (1/7EM) (1/7KM) EBLOCH. (S?
25 0CT B5 7 0O 13 MI VERY CLEAR 0 ] 060.3 00d. 1S 000,19
25 0CT 85 7 & 15 MI VERY CLEAR Q O 060,11 oQ0.12 Q00,17
23 O0CT 85 712 14 MI VERY CLEAR O o} V60,0 000,14 030,18
25 OCT 8S 718 11 MI CLEAR z 0 055.8 000, 18 GO0, 22
25 OCT 85 724 20 MI  VERY CLEAR [¢] [ 059.8 Q0. 10 GOG, 12
25 OCT 8S 730 20 MI VERY CLEAR Q Q 059.8 Q. 1O
25 OCT 85 736 14 MI VERY CLEAR . (o] (8] 059.8 00Q.14
2% OCTY 8% 742 13 MI  VERY CLEAR 4 0 05%.7 000. 15 000,19
25 OCT 85 748 T ML LT FRAIN 882 o] 0S9.5 GG LS4 Q.41 186
25 OCT 85 784 3 MI LT RAIN 554 [¢] 059.Z 000. 60 Q00,51 187
DATE TIME DAYTIME FRESENT EVENT RAIN TEMF TOTAL EXCO EXCO-EVENTS DIS!
VIS RNG WEATHER COUNT TIPS CEG F (1/rmM (1/78M) BLOCH (S
25 OCT 85 8 © 7 M1 CLEAR 15 o) 039.5 000,26 GO0, 28
25 OCT B85 8 & S MI LT RAIN zS3 [¢) 0S5%9.2 Q00. 41 o00. Z7 128
2% OCT 83 812 1 174 MI  RKHVY RAIN 2197 2 059.2 001.8 000,97 189 193
25 OCT 85 818 3 Ml LT RAIN 449 0 0S%9.1 0G0, E8 oo, 5 191 192
25 0OCT 85 824 21/2 MI LT RAIN 899 1 036.8 QOO.71 O0G.S1 192 194
25 0OCT 85 830 1 Z/8 Ml MDD RAIN 1887 1 058.9 001.40 000,78 195 196
25 OCT 85 836 SO00 FT  HVY RAIN 2420 2 0358.5 002.62 OOl.13 197 198
25 OCT 85 842 S MI LT RAIN 349 [¢] 058.7 QGO. TS 000,20 199 200
25 OCT 85 848 4 MI LT RAIN 282 Q 038.7 [¢IaTn . Y3 000. 41 201 202
25 OCT 85 8%4 1 174 MI  HVY RAIN 2299 2 0S8.8 003.44 000, 90 207 204
DATE TIME DAYTIME PRESENT EVENT RAIN TEMP TOTAL EXCO EXCO-EVENTS DISH
V1S RNG WEATHER COUNT TIPS DEG F (1/EM) (1/KM) BLOCK (S)
2 O0CT B8S 9 0 S MI LT RAIN 308 (] 0s8.8 QQO.T6 000,28 205 208
25 0CT 85 9 6 3 MI LT RAIN 854 V] 0s8.7 000. 55 000.37 207 2068
<25 0OCT 85 912 1 5/8 MI  MOD RAIN 1772 2 438. 6 Q01,12 QO0.74 209 210
25 OCT 85 <918 4 MI LT RAIN 471 (9] 058.95 QO0. 46 000. 28 211 212
25 OCT 85 924 3 MI LT RAIN S41 1 058.4 000.S6 000,51 2132 214
25 0CT 85 930 2 1/2 MI LY RAIN 789 O 058.2 QOO 70 000, 60 215 216
25 OCT 8S e T MI LT RAIN 466 1 058.0 Q00,33 VGO.SO 217 218
25 OCY 85 942 1 3/8 M1 MOD RAIN 2008 1 057.8 001.75 a00. B84 219 220
25 OCT 85 948 1 1/8 MI  HVY RAIN 2407 1 057.8 001.62 000,96 221 222
2% 0OCT BS 954 I MI LT RAIN 732 1 057.8 Q00,67 000,56 22T 224
DATE TIME DAYTIME FRESENT EVENT RAIN TEMP TOTAL EXCO EXCO-EVENTS DIS
VIS RNG WEATHER COUNT TIPS DEG F ! (1/7¢M) BLOCK (S)
25 0OCT 85 1G9 4 MI LT RAIN 289 O 057.9 229 226
25 0BCT 85 10 6 o MI TR RAIN L) Q 0SB. 0O 227 208
25 OCT 8% 1012 9 MI CLEAR 8 o 'o0s8.0 QOG220
25 0CT 85 1018 9 MI CLEAR S Q 0S8.1 0OG. 21
25 QCT g9 1024 2 11 CLEAR 4 < 038.2 00016
25 0CT 8BS 1030 12 MI  VERY CLEAR 1 [a] 0S8.4 3
2SS OCT 8BS 1076 12 MI CLEAR 3 Q 056. 72
29 OCT 85 1042 12 MI CLEAR 3 Q GSEB. 4 Qua. 16
25 0CT 85 1048 11 MI CLEAR 1 (5] 0S8.2 OO0.17 G001
25 0CT 85 1054 11 MI CLEAR O [a] 58,2 OGGO.17 OO, 20
DATE TIiME DAYTIME FRESENT EVENT RAIN TEMF TQTAL EXCO EXCG-EVENTS DIS
VIS RNG WEATHER COUNT TIPS DEG F {(1/kM) (1/7¢M) BLOCH (S)
23 0CT 85 11 © 12 MI  CLEAR 1 0 0S8. T QOG. 16 OO, 19
25 OCT B3 11 6 11 MI CLEAR V) (o] 0S8.4 2 OO0, 21
25 0€T 85 {112 10 MI CLEAR ] [l 0S8. T 000,22
<S 0OCT 8% 1118 S MI CLEAK o O 58, 4 OO0, 20 OO0, 27
5 OCT 85 1124 9 MI CLEAR 4] ] 0S8.4 000, 21 OO, 25
<5 OCY 8% 1120 8 MI CLEAR 0 0 0S8, 4 QOO. 23 QOO 25
2% OCT 85 t176 8 Ml CLEAR [v] (2] 0S8, = Oond . 24 QUO. 26
Figure 2.5. An automated present weather report

produced by the Laboratory Model APWOS
during a brief rain episode.
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o ' ‘ ' ‘
\ A/D converter. In this case, however, the microprocessor is located in the control/power
' unit a few feet from the sensor head of the VR-301. Also installed in the control/power
- unit is a dedicated temperature sensor. Measurements from other meteorological
sensors may also be sent to the microprocessor via the analog multiplexer and A/D
4 converter. The microprocessor requires both RAM and ROM storage and an electronic
timer. Data is collected, processed and stored by the microprocessor during each
K sample time period.
; As before, a 12-bit A/D converter is used to digitize the analog signal from
- the VR-301 sensor and other meteorological sensors. The multiplexer is directed
& by the microprocessor to continuously monitor the present weather AC signal except
N for a periodic momentary interruption when the VR-301 DC signal and other meteorological
:~ sensor signals are to be sampled. Digitization of the AC signal occurs at twice the
e modulation rate of the LED source. The time of digitization is governed by a sync-signal
‘I, derived from the source modulator. The AC signal is digitally sampled only at the
. time of peak positive and negative values of the signal. A minus sign is applied to
the negative peak values causing the signal to be digitally rectified.
<,

2.3.2 Digital Signal Filtering

2.3.2.1 Particle Digital Filter

RS aaC ¥, X
B

The rectified AC signal is treated by three digital filters as shown in Figure
2.7. These three filters are identified as: (1) the large/fast particle filter, (2) the

small/slow particle filter, and (3) the fog-tracking filter.

The function of the two particle filters is fundamentally different from that

AP W

of the tracking filter. The function of the particle filters is to provide the best possible
signal to noise for the particle size/velocity measurement process, with minimum
introduction of error to the size and velocity measurements.

The function of the fog tracking filter is to adjust the threshold values of the

4 “ :‘.".i'. -4'1‘ 14

two particle filters such that the value of the particle detection threshold is continuously

set at a fixed amount above the quasi-steady value of the rectified AC signal produced

L § _'l

o by fog or haze.
.5:: The physical limitation to the detection of small particles by the automated
Y present weather observing system is the noise generated within the photoelectric
detector/amplifier sub-system. This noise is due to either ambient light incident
| on the detector during daytime, or the inherent noise of the detector during night-
]
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time. In analogy with analog filtering the noise of the detector can be minimized
by narrowing the bandwidth with a digital bandpass filter. The possible penalty paid
for narrowing the bandwidth is distortion of the pulse shape. In the present weather
observing system distortion of the pulse shape leads to errors in the measurement
of the size and velocity of precipitation particles. Size of a particle is determined
by the signal pulse amplitude and velocity is determined from the pulse duration.

In a present weather observing system it is highly desirable to detect the small
particles characteristic of drizzle. Drizzle particles and small raindrops are slow-
moving hence a filter with narrow bandwidth can be employed for their detection
and measurement. The filter intended for this purpose is labeled the Small/Slow
Particle Filter in Figure 2.7. The equivalent electronic bandwidth of this filter is

0 - 40 Hz. The detection and identification of drizzle is an area which needs further
attention in any follow-on development program. Large particle drizzles are detected
by the present APWOS sensors, small particle drizzles are not.

It is not always the case that slow-moving particles are small. For example,
most snowflakes have slow velocities. Snowflakes create signal pulses of sufficient
amplitude to cross the detection threshold level of the Large/Fast Particle Filter.

The selection rules on signal processing are such that if the threshold of the Large/
Fast Particle Filter is crossed the size and velocity measurement of the particles

are established by the A-chain of the software program (see Figure 2.7). The equivalent
electronic bandwidth of the Large/Fast Particle Filter is 0 to 160 Hz. Because of

its greater bandwidth this filter introduces less distortion to the signal pulses created
by all naturally occurring precipitation particles. Also, because of its greater band-
width this filter admits more noise, requiring the detection threshold to be set higher
with subsequent loss of ability to detect small particles.

2.3.2.2 Fog-Tracking Digital Filter

The purpose of the fog-tracking filter is to generate a quasi-steady-state base-
line for the particle detection system. When no detectable precipitation is present
in the sample volume the filter retains an equivalent electronic bandwidth of approxi-
mately 5 Hz (i.e., a time constant of 0.03 seconds). This bandwidth permits the baseline
of the measurement system to track variations in the AC signal due to changes in
the concentration of haze and/or fog particles. Rapid variations in fog levels are
accommodated by the 5 Hz bandwidth.

16
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Whenever a precipitation particle is detected by either the A or B chains of
the detection system the bandwidth of the tracking filter is switched to a narrow-

er bandwidth. The purpose of the bandwidth change is to reduce the effect of precipitation

particles on the baseline of the detection system. That is, the baseline is rendered

relatively insensitive to the signals produced by precipitation particles. That is accomplished

by changing the filter bandwidth to approximately 1/3 Hz, or viewed another way

the response time constant of the filter is increased from 0.03 seconds to 0.50 seconds.

2.3.3 Adaptive Thresholds

The purpose of the adaptive thresholds indicated in Figure 2.7 is to discrim-
inate between signal puises due to precipitation particles and spikes due to noise
generated within the detection process. Discrimination against noise at this early
stage of the signal processing is based entirely on the amplitude of the pulses.

The adaptive filter operates by taking the output of the Fog-Tracking Filter

and adding a constant value. Since there are two particle filters with differing bandwidths

separate constant values are added, the constant value for Adaptive Threshold B
being smaller than that for Adaptive Threshold A.

Figure 2.8 illustrates the point that not all precipitation particles are detect-
ed (small drizzle particles, for example), because their amplitude does not exceed
the adaptive threshold level.

2.3.4 Peak Detect

Whenever a precipitation particle is detected the Peak Detect Routine of

the software program compares the latest signal value with the previous signal value
(taken 1/4000 second earlier). If the new signal value is greater than the previous
value the routine adopts the new value as the maximum signal value. The process
is repeated until the peak value of the rectified AC signal is found. This peak signal

value is later converted to the particle size.

2.3.5 Time-In-Sample Volume

The time spent by a precipitation particle traversing the sample volume is

measured by counting the number of data samples representing the rectified signal

17
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pulse. A less accurate value of pulse duration is obtained by measuring the time

from crossing the adaptive threshold value until the signal returns to the baseline
value of the fog tracking filter. A more accurate value of the pulse duration is estab-
lished by counting the number of samples from the time of occurrence of the peak
value until the signal returns to the baseline value (a process which gives one-half

the pulse duration) then doubling that value to obtain the entire pulse duration. This
latter process assumes that the pulse shape is symmetrical about the peak value —
an assumption which is borne out in practice.

2.3.6 Selectors

If a precipitation particle is detected by both Adaptive Threshold A and Adaptive
Threshold B then the peak-signal-value and time-in-sample volume measured by Chain
A of the software routine are adopted. Peak-signal-values and time-in-sample volumes
measured by Chain B of the software routine are adopted only if Adaptive Threshold
B is crossed and Adaptive Threshold A is not crossed.

2.3.7 Total-Signal Minus Particle-Signal Filter

The output of the digital synchronous rectifier is sent to the three filters,
whose purpose was described earlier, plus a very narrow band (0.0053 Hz) filter whose
purpose is to provide a filtered sighal representing the atmospheric extinction coeffici-
ent with the effects of particles removed. To achieve this result the filter is directed
by the OR-Gate, indicated in Figure 2.8, to ignore the rectified AC signal whenever
either of the adaptive thresholds has detected a precipitation particle.

Figure 2.9 illustrates the method employed to separate the particulate signal
from the non-particulate signal. The software routine removes the entire signal (i.e.,
particle signal plus haze or fog signal) during the time that the particle is in the sample
volume.

In order to eliminate the signal during the entire time that the particle is in
the sample volume the software routine must go backwards in time a slight amount
to remove the fraction of the particle signal that precedes the crossing of the detection
threshold.

The total extinction coefficient (EXCO) and the extinction coefficient minus
the effects of particles (EXCO-EVENTS) are determined from an average of the signal
taken every 30 seconds. In the case of the latter extinction coefficient the true
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ey average is obtained by summing all values of the signal remaining after the particle
. subtraction process and dividing by thirty seconds minus the time periods during which
= the particle signals were removed.

N

L8
o 2.3.8 Particle Classification Process
N

‘

The Particle Classification Process indicated in Figure 2.10 is the software

:'. routine that sorts particles of various sizes and velocities into bins as represented

J:' in the precipitation recognition matrix. The peak values are used to place particles
;? in one of sixteen amplitude categories representing sixteen particle size groups.

These groups include the smallest detectable particle to the largest particle that

* does not saturate the detector electronics. Similarly, time-in-sample volume values
5' are used to categorize particle velocities in one of sixteen velocity groups.

}' Velocity is determined from the time-in-sample volume, using the vertical
' dimension of the sample volume as the distance traveled in that time.

: Once the size and velocity of a particle are established the matrix bin appropri-
-‘Sf ate to those values is identified and the particle number in that bin is incremented

’ by one count. H
. 2.3.9 Precipitation Amount Process
{' At the end of each sample time period (typically 1 to 6 minutes) the amount

of precipitation accumulated during that time is determined.

:' Rainfall: The accumulated rainfall amount is determined by first calculating
2 the water content (volume) of each detected drop and summing the volume of all

E drops to get the total amount of water passing through the sample volume. The final
) step in the process requires a knowledge of the area through which the drops fell

'y and the application of an empirically established calibration constant.
) The amplitude of the signal generated by a raindrop is proportional to the
K/ square of the drop radius. The constant of proportionality is established by allowing
‘_‘ a water drop of known size to fall through the sample volume. The volume V of each
o drop is computed from a knowledge of the radius R using the following formula, and
.-C - assuming a spherical shape for the drop,
' v=3nR3 (1)

:
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N The total quantity of water W falling during a given time period as given by

"-3 the expression

& w=& > 3 7 R3. NR) (2)

s R

o . where A is the cross-sectional area of the sample volume (i.e., the area presented

A to the direction of rainfall) and N (R) is the number of raindrops of radius R that

;S:é passed through the sample volume during the sampling time period. The constant

:' K contains: (1) a calibration factor that is established either by comparison with

e an independent rain gauge or by dropping water drops of known size through the sample
3 volume, and (2) a factor to convert the physical dimensions of the drops and cross—

:' sectional area of the sample volume to provide the standard reporting unit for rainfall

:::E (i.e., inches of water.

- Normally rainrate is reported on an hourly basis by meteorologists; i.e., inches

, . of water per hour; rainfall accumulation is reported in 6 hour increments; i.e., 6,

}E 12 and 24 hours. A field model present weather observing system will, in most applica-

E Nj tions, interface with a master computer which can perform and display the rainrate

. and rainfall accumulation data. The field model microprocessor will not normally

- perform the function of accumulating the amount of rainfall.

? At present, the Field Model system reports only the amount of equivalent

'.\ water measured during the sample time period. It would be an easy task to program

L the master IBM-PC computer, to which the Field Model is connected at Otis ANGB,

.~ so that 6, 12 and 24 hour rainfall reports are generated.

?:’-t Snowfall: Because frozen precipitation comes in a myriad of shapes, crystall-

~‘:. ine structures and sizes there is not a direct correlation between any of the particu-

B lar dimensions and signal amplitude as there is with raindrops. However, there is

A N a distinct relationship between the amplitude of the signal pulse and that area of

*2“ the particle illuminated by the transmitter which in turn scatters light toward the

_\$ receiver. The distinct trend of that scattering relationship is such that the larger

L the particle the greater the signal amplitude produced.

::;‘ Particles of frozen precipitation are "sized" by comparison with their rain-

X drop signal equivalents. That is, a particle of frozen precipitation is arbitrarily taken

4 to have the same size as a raindrop that produces the equivalent signal amplitude.

‘:"‘ The rate of fall of snow or other forms of frozen precipitation is customarily

}:{:: measured in terms of equivalent water content as is the amount of snowfall. Before

ey
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M

"::'0 the Present Weather Observing System can determine the rate, or amount, of snowfall
i" it must first identify the form of precipitation. The identification of particles is

M a process conducted by the section of the software entitled Present Weather Classifi-
s cation Process (see Figure 2.10).

-:; Snowfall can be measured by the Present Weather Observing System to an

,.E accuracy of about +20 percent using a very simple technique. The method utilizes

an empirically established density factor applicable in general to all forms of snow

(but not ice pellets). The value of that empirical density factor for snow has been

&: found to be 0.1. Thus, if a given form of precipitation has been established as snow

3:4 the equivalent water content is found by calculating the amount of water that has

‘ passed through the sample volume assuming spherical particles of the dimensions
represented by each column of the precipitation recognition matrix then multiplying
:: the result by the 0.1 density factor to find the equivalent water content.

:'. A more accurate method of determining the equivalent water content of frozen
IS ' precipitation requires that its basic form be established (i.e., snow, snow pellets,

:"’ snow grains or ice pellets). An empirically determined density factor can then be

: established for each form of frozen precipitation. In principle, the various forms

:. of frozen precipitation can be determined from the particle size/velocity distribution
" in the precipitation recognition matrix.

':: A similar approach can also be applied to mixed forms of precipitation (i.e.,

Ej liquid/frozen or combinations of frozen precipitation). In principle, these mixed forms
“: can be identified by their size/velocity distributions. An empirically established

_ density factor for each type of mixed form can then be applied to determine the

, water content as for the case of pure snow.

: j Although snowflakes are easily identified by the APWOS some work remains

i" in the area of identification of the other forms of frozen precipitation and in the

areas of mixed precipitation. Small granular particles of snow (e.g., snow grains,

.,_ snow pellets) fall at velocities faster than snowflakes. As a result, these types of

S: particles can be misidentified as light rain. Ice pellets, when they fall, are invariably
;‘é mixed with rain; but both forms of precipitation fall at approximately the same velocity.
- Techniques must be explored for identifying this and other forms of mixed precipitation.
‘.f Also, techniques must be explored for identifying ice pellets alone and hail. Hail

:,;4 occurs so infrequently that simulation of hail offers an attractive alternative for

; the development of hail identification algorithms.
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2.3.10 Present Weather Classification Process

The present weather classification process consists of a series of algorithms
for identifying the type of precipitation plus a group of weather reporting codes.

The algorithms, which are empirically established from studies of precipitation
recognition matrices taken during ail forms of precipitation, are used to: (1) identi-
fy the type of precipitation based on the particle/velocity distribution in the matrix
array, and (2) to discriminate against any false signals which may have exceeded
the filter thresholds. Again, false signals are identified by the distribution of the
"apparent sizes" and velocities of the "particles" developed in the precipitation recognition
matrix.

Weather reporting codes are used to describe the type and intensity of precipitation
whenever precipitation is present and also to identify the obstruction to vision and
its general strength (e.g., heavy fog) when precipitation is not present. The reporting
codes presently in use in the automated present weather observing system are drawn
from a combination of U.S. National Weather Service reporting codes and an International
Visibility Code as shown in Table 2.1.

When precipitation and fog are both present the algorithms separate the total

extinction coefficient into its two components, i.e., that which is due to precipitation
and that which is due to fog. The present weather report then states that both precipitation
and fog are present (e.g., Light Rain + Fog).

2.3.11 Field Model Present Weather Report

A typical Field Model present weather report is shown in Figure 2.11. Also
shown are entries from the AFGL weather observer's report. The significant differences
between this report and the Laboratory Model report are as follows: first, the amount
of precipitation accumulated during each sample time period (6 minutes) is reported
(see Column 7 which has the misleading title of rainrate) and secondly: there is no
tipping bucket input to the report as there is in the Laboratory Model report.

Whenever snow is identified by the Field Model instrument the density factor
of one-tenth is applied in the calculation of accumulated amount of precipitation
as is done by the Laboratory Model instrument.
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%\ Table 2.1. Various Repo;tin.g Codes Employed with the Automatic Present
»\: Weather Monitoring System.
.- (A) INTERNATIONAL VISIBILITY CODE
Daytime
f- Visual Range Obstruction to Vision Extinction Coefficient
(km™ %)
:,: <50 m Dense Fog >60
\:5 50- 200 m Thick Fog 60 - 15
: 200~-500 m Moderate Fog 15-6.0
500 -1000m Light Fog 6.0~ 3.0
% 1-2km Thin . g 3.0-1.5
2 -4 km Haze 1.5 -0.75
p2 4 -10 km Light Haze 0.75-0. 30
P 10 -20 km Clear 0.30-0.15
‘::: 20 -50 km Very Clear 0.15-0. 06
i >50 km Exceptionally Clear <0.06
A
% (B) INTENSITY OF RAINFALL
¥ Classification Rate-of-Fall
o (inches per hour)
ﬁ Trace Less than 0, 005
; Light Trace to 0. 10
- Moderate 0.11 to 0. 30
:‘_:; Heavy More than 0. 30
Lo
~ (C) INTENSITY OF SNOWFALL
.
. Classification Visual Range
:l:: (statute miles)
W Light More than 5/8
& Moderate 5/16 to 5/8
5 Heavy Less than 5/16
P
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eleven hours on the morning of 13 May 1985 that included
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E} 3.0 PRECIPITATION RECOGNITION MATRICES
] 3.1 Algorithm Development
5
' Once the Laboratory Model APWOS was operational the task of developing
::; the software algorithms began. Algorithms were needed for: (1) precipitation identifi-
y cation, (2) rate of precipitation (i.e., amount of water or water equivalent falling
'.f: during the sample time period), (3) false alarm discrimination, and (4) the identification
:EI of fog in the presence of precipitation.
h: The Rate of Precipitation algorithms are rather straightforward as indicated
in Section 2.3.9 of this report. However, their proper application requires that the
.. type of precipitation be correctly identified. The identification of precipitation type
» was greatly aided by gathering and studying large numbers of Precipitation Recognition
I, Matrices taken during precipitation episodes. In a similar manner, false alarm algorithms
j were derived from a study of matrices for which "particles" were detected, but for
] ‘ﬂ situations when an observer could definitely report that there was no precipitation.
: 3 Most of the algorithm development occurred during the time when the Labora-
_r: tory Model instrument was the only operating present weather sensor. When the
] Field Model present weather sensors become operational the algorithms developed
:Ef for the laboratory model instrument were incorporated verbatim into the field model
' instruments. Subsequently, from time-to-time the algorithms were modified to improve
[ the performance of the instruments.
pe
y 3.2 Large Scale Matrices
W Figures 3.1 and 3.2 present precipitation recognition matrices for a light snow
and a light rain episode respectively. The particle size scale of these two matrices,
-.: extending from radii of 244 microns to radii of 4472 microns (.244 to 4.472 millimeters),
"; represents the larger of the dual-scale matrix approach. Early in the development
M program this particle size scale was the only scale used with the matrices. However,
,‘ during light precipitation episodes approximately half of the matrices went unused
",t‘i‘ as is the case of the matrices shown in Figures 3.1 and 3.2. This situation eventually
{:f;, led to the addition of an expanded scale matrix.
The particle velocity scale of the matrices has units of centimeters per second
o and extends from 0.30 to 20.00 meters per second in fifteen rows with an additional
\- row provided for observing "particles" in the velocity range from 20 to 99.99 meters
.
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"‘ ::S per second. Events falling into this latter category represcnt either particles passing
}:: through the outer fringes of the sample volume or false particles generated by noise
P\ spikes or sun glints. It is highly unlikely that any particles of natural precipitation
.\. would have true velocities as great as those represented by this last row of the matrix.
_" The median velocity particle in each column is represented by a minus sign
:\':: in front of that group of particles which includes the particle with median velocity.
L The median velocity represents that velocity for which fifty percent of the particles
o have a higher velocity and fifty percent have a lower velocity. The velocity of the
:,' median particle in each column is extremely valuable as an indicator of the type

“_\" of precipitation. This fact is borne out by the two matrices shown in Figures 3.1

i and 3.2.

o The matrix displayed in Figure 3.1 presents the size/velocity distribution of
.: 375 snowflakes which fell through the sample volume during the five minute time

E: period ending at 2205 on 30 January 1984. The median velocity of particles in all

gl columns is low (0.66 to 1.68 meters per second) and indicative of snow — which the
-.. algorithms properly identified.

"::j The matrix displayed in Figure 3.2 presents the size/velocity distribution of
E*; 942 raindrops which fell through the sample volume of the laboratory sensor during

the five minute sample time period ending at 0240 on 4 February 1984. The median
velocity of the raindrops ranged from 1.68 meters per second for the smallest drops

)
"f: to 6.4 meters per second for the largest drops. This velocity distribution is clearly

;: indicative of rain which the algorithms also correctly identified.
Tty

-

3.3 Expanded Scale Matrices

-

-

- 3.3.1 Rain and Snow Episodes
:-.j In this section we shall examine several matrices for which the size-scale

. has been expanded while the velocity scale remains unchanged. For these matrices
-;:Z: the fifteenth size column has a maximum particle radius value 1.304 millimeters.
"’ Any particles with radii greater than 1.304 millimeters are placed in the sixteenth
.. size column. If any particles show up in the sixteenth column of the expanded sale

\ matrix then the large scale matrix for all of the particles detected during the sample
f:: time period is also recorded.

- ‘ Figure 3.3 shows an expanded scale matrix recorded for a very light rainfall.
K-~ Only 268 raindrops passed through the sample volume during the five minute sample
2
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time period. Median particle velocities ranged from 2.6 to 5.2 meters per second,
indicative of rain which the algorithms correctly identified.

An expanded scale matrix for a moderate rainfall occurrence is shown in Figure
3.4. A total of 1811 raindrops fell through the sample volume in the five minute
time period. Median velocities ranged from 2.6 to 6.4 meters per second. In contrast
to this matrix of a moderate rainfall is the matrix for a moderate snowfall with a
comparable number of particles (1754) shown in Figure 3.5. In the snowfall episode
median particle velocities ranged from a maximum of 1.7 meters per second down
to 0.66 meters per second with the smaller particles in general falling faster than
the larger particles. This latter behavior differs distinctly from the rainfall behavior
where larger particles always fall faster than slower particles. Another obvious differ-
ence between rainfall and snowfall can be illustrated by the two matrices shown in
Figures 3.4 and 3.5; that is, the particle size distribution. Rainfall has a very large
number of small drops with a sharp falloff in the number of particles vs. size. For
a moderate rainfall the drops seldom reach a size of 1.3 millimeter radius. Snowfall
also has a large number of small particles, but after the initial (slower) falloff there
is a long plateau-like behavior. Furthermore, for a moderate snowfall there are many
particles with "sizes" larger than 1.3 millimeters in radius.

To illustrate the difference in the rate of size-falloff between a moderate
rainfall and a moderate snowfall we note that in Figure 3.4 one-half of all the raindrops
may be found in the first two columns of the matrix, whereas five columns of the
matrix in Figure 3.5 are required to encompass one-half of all the snowflakes.

3.3.2 Frozen and Mixed Forms of Precipitation

As we have seen, pure rainfall and pure snowfall are clearly identifiable by
the distinguishing characteristics of their particle size and velocity distributions.
Frozen forms of precipitation other than snowflakes manifest some of the velocity
characteristics of rain which makes this identification a greater challenge. These
other forms of frozen precipitation; namely, snow pellets, snow grains, ice pellets
and hail have aerodynamic shapes which permit them to fall faster than snowflakes.
Depending upon their physical density and size some of these particle types fall as
fast or faster than rain drops, e.g., ice pellets and hail; while the other forms, snow
pellets and snow grains, have velocity characteristics midway between those of pure
rain and pure snow.

Large hail particles are known to have velocities greater than those of raindrops.
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:‘$ Large hail particles are known to have velocities greater than those of raindrops.
i::’ ¥ It is this characteristic that we hope to eventually util